Multiple kernel extreme learning machine
نویسندگان
چکیده
Extreme learning machine (ELM) has been an important research topic over the last decade due to its high efficiency, easy-implementation, unification of classification and regression, and unification of binary and multi-class learning tasks. Though integrating these advantages, existing ELM algorithms pay little attention to optimizing the choice of kernels, which is indeed crucial to the performance of ELM in applications. More importantly, there is the lack of a general framework for ELM to integrate multiple heterogeneous data sources for classification. In this paper, we propose a general learning framework, termed multiple kernel extreme learning machines (MK-ELM), to address the above two issues. In the proposed MK-ELM, the optimal kernel combination weights and the structural parameters of ELM are jointly optimized. Following recent research on support vector machine (SVM) based MKL algorithms, we first design a sparse MK-ELM algorithm by imposing an l1-norm constraint on the kernel combination weights, and then extend it to a non-sparse scenario by substituting the l1-norm constraint with an lp-norm ðp41Þ constraint. After that, a radius-incorporated MK-ELM algorithm which incorporates the radius of the minimum enclosing ball (MEB) is introduced. Three efficient optimization algorithms are proposed to solve the corresponding kernel learning problems. Comprehensive experiments have been conducted on Protein, Oxford Flower17, Caltech101 and Alzheimer's disease data sets to evaluate the performance of the proposed algorithms in terms of classification accuracy and computational efficiency. As the experimental results indicate, our proposed algorithms can achieve comparable or even better classification performance than state-of-the-art MKL algorithms, while incurring much less computational cost. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coeffi...
متن کاملعیبیابی سازهها با استفاده از شاخص تابع پاسخ فرکانسی و مدل جایگزین مبتنی بر الگوریتم ماشین یادگیری حداکثر بهینه شده
Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamo...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملDeformed Kernel Based Extreme Learning Machine
The extreme learning machine (ELM) is a newly emerging supervised learning method. In order to use the information provided by unlabeled samples and improve the performance of the ELM, we deformed the kernel in the ELM by modeling the marginal distribution with the graph Laplacian, which is built with both labeled and unlabeled samples. We further approximated the deformed kernel by means of ra...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 149 شماره
صفحات -
تاریخ انتشار 2015